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Abstract

In this note formulas are given which describe the behaviour of the plasma quantities

under compression in the presence of transport and X - heating. Instantaneous energy

deposition and the approximation <0'V>'\'T lare assumed. The results are expressed

in terms of the parameters ¢ = (T“L)/Zgnd = :/2‘2' , where T is the plasma

temperature, Tm is the marginal temperature for ignition, [ the compression time and
7-.(: the relevant energy confinement time. It is shown that up to first order in & and o~

a compression in which the plasma volume is changing by A V', remains purely adiabatic

Y
provided that G"/ 1~ (/{ — A V/\/> /’)Zﬁfl ng 4‘-'7, which are wedker than the
usual G~<<. ' :

The deviations from adiabaticity at higher orders are easily calculated. The formulas are
applied to the calculation of the relevant quantities in the compressions - decompressions
cycles around the ignition point which allow the temperature control of an ignited plasma.
Explicit formulas are given for the temperature excursions, the duration of each side of the
cycle and the electric energy and power directly generated in the external coils of the
controlling vertical field. The application of these results to the Zephyr experiment and

to INTOR is discussed.
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The deviations from adiabaticity at higher orders are easily calculated. The formulas are
applied to the calculation of the relevant quantities in the compressions - decompressions
cycles around the ignition point which allow the temperature control of an ignited plasma.
Explicit formulas are given for the temperature excursions, the duration of each side of the
cycle and the electric energy and power directly generated in the external coils of the
controlling vertical field. The application of these results to the Zephyr experiment and to

INTOR is discussed.

1. Transport Equations Including Compression

The transport equations including compression are easily derived from the energy conservation

per unit volume and from the particle conservation

5‘7 - :;l//,:ﬂ +/D%V‘ y at Uorz cpaudh (1)

Here (/=(3/z)4tVKT and p= nKT; 4 is the heat production per unit volume.

Let us indicate with Z, S, the sum of all positive and negative heat sources per unit time

and volume. Then applying (1) to each species } one obtains




2d (kT Sjl—fmk‘,!._"_[lf
zdt( ’) Zl‘ 2 1 Tyt @)

We consider a situation in which the only important heat sources are the & - heating LY
J ¢ e

the transport 'Séa, and the ion-electron transfer S, :=5, . The ions, with density

m; = mp + ™y, are assumed to be at the same temperature T . The density of the

o - particles is neglected and the & - energy deposition is assumed to be instantaneous.

The expressions for 503 and 51‘1 are as follows

‘TR 2 . I kT
5 =;;Wo/z}”’i <6V>f13 , 5 = - T 3)
&
where \Xo/( = 3500 kev, K=1.6 x 10_]6 Joule/ kev, ﬂg‘ is the fraction of the «-energy
going to the g particles ( l?de + s =1 ), 72—0.; is the energy confinement time for

the species 4 and the following approximation is taken for LoV):

-Z’r Z
<oV (éf..“ﬁ) - 3
—]-;r. TT T /ﬁ w M‘-/ﬁ) (4)

This approximation is very good for T. between 8 and 20 kev /1/.
Summing up the two equations (2) for the ions and the electrons, noting that n.=n_ = n
and assuming T‘: ~T =T , one obtains from Eq. (2):

d __J_g/I) bl L
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Here 2 =m KT , where n and T are space averaged quantities (we take the density average
of T) and

o Wy o2

Y EU K ©)

The quantity & is a coefficient which includes the effect of the space averaging on the
A - heating and also takes into account the possible non perfect confinement of the o-

particles.



2. Integration of the Transport Equation

Eq. (5) is a Riccati equation which can be integrated exactly , giving

7 ¢
) = 1 [l oY Kol
° VY |- %p f At ‘72"7/ / 2ocp ~ fdf'/z';{‘/ﬂ )
fﬂ

%

where a possible time dependence of 7, resulting from the compression, was taken into
account,

In the absence of compression Eq. (7) takes the form

wep - (€-1 )27,
|- 2ap 7, + Zap ep -(¢))e ®)

fo

pl) = P,

One can see that p(t) is increasing or decreasing depending whether

’\PO ?W - 20( 'Yeo (9)
where P is the marginal value of p for ignition, associated with the temperature
TM = ?W\- /Mo k

In order to obtain from Eq. (7) an algebraic expression for ’P(fo +’Yo) for a given change
of the plasma volume during a time 7%, we assume the approximation '72/21;(6 <

and moreover we approximate ’Ye(t_) in the range t, < t < f;*'YC with an intermediate
constant value -'?e

—

Thus, up fo second order in 6= ’T'/ 17, , one obtains from Eq. (7)

s

g
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where

T T an

and :\_f—z\é + AV is some intermediate value of V(t) in the range % & £ £+7,

It is then seen that if

55
«ll—(\——%x) [ <« | 6L« (12)
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t he ideal adiabatic law P/ = (\{/V) holds. The condition (12) can be understood

physically in the following way. The change of p adiabatically reloted to a change of
volume fromV to V is given by p = P .+ where 7, (V/V) Now the transport
losses on p, - p inatime 77 are given by 67 - p} and these losses should be

negligible in order for the ideal adiabaticity to hold. So one has the condition

“fe-7] < .
which is equivalent to the inequality (12). For a plasma near ignition the non adiabatic

effects of transport and o - heating cancel each other at the lowest order and one is left

with (12) as the only condition for adiabaticity instead of the usual & <</ .

3. The Periodic Decompression - Compression Cycle

We will now apply our results to the regulating decompression-compression cycle represented
in the P—V plane by fig. (1). The interest of this cycle relies on the fact that not only it
can be applied for the thermal regulation of an ignited plasma /2/ but also it allows in
principle a partial conversion of the o -particle heating directly into electricity to be
recovered in the circuit for the controlling vertical magnetic field, Indeed the electrical
energy delivered by the power supply to the external coils in a cycle of duration ™ ,

neglecting resistive losses, is given by
t+ 7T

f{% + Yoy )dt.m —Z;-.%- dV <o (14)

so that one has an energy gainin the outer circuit ( U and I are the applied voltage and
current and the indices ¢ and v refer to the chmic and vertical circuits respectively)
resulting from the fact that the plasma to be displaced has a smaller pressure during the

compression than during the expansion phase.

Straightforward application of Eqs. (7) and (8) under the condition (12) gives the following
expressions for p at the points B, C, D of the cycle

Transition A —> B
5/3

7o = T (‘%) (15)

Transition B—> C

/ wiod Ats/’T’
W /—-L(lﬁ) ﬁe[u/,(df/ﬂ)?



where Ag is the duration of the transition and ’7;\ , T are the confinement times in A

and B respectively.

Transition C——> D :

exp -(A’—‘ﬁ /27:8)
N IAGT (17)
- (;,f} 7z ﬁ'”‘/"/‘ﬁa/z’é)]

fo = f

Transition D —> A :
The expression for PA calculated applying (8) to this transition must be equal to the initial
PA in order for the cycle to be closed. This gives the following condition for the duration

A€, of the transition :

5
| — f’i Y’i) 73 ~ - > e - h L each - A{A uﬂ:
T [(Ws ?f‘(’“"?‘(‘“ﬂ/zs))* o (M 7&)(/ - (842 (18)

= Lip- (Aff‘/i'{; + »4*5/27:3/

The curve of marginal ignition in the p-V plane is given by the relation

I
(?m(\/;) (V-\f) l for the Alcator scaling
i (V) L (V;) o s (19)
?M(V,;)(%\;-) for the Neoclassical scaling
A

Since the system is subigniting in B and igniting in D, from ?B w@iqe (VB) and
P > 9 (V;\ ) one derives the following two conditions respectively
D m '

5/3 24

/_VE_) -| =¢ -1 (20)
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Tg' = Te 2 Ta = Tm
Tg Ta (21)

2
Here C is the compression factor C =%/\£ ;4 =13/6 orlzgi A = 2 respectively for the
y 2
TV Ve )

It is useful to relate []Té :-E -Z to the duration Afﬁ of the transition B —C:

Alcator or the Neoclassical scaling; E =

Y
ATB w - PBitE Pe A T(%}} _ LXp- (AtB/?.’YB)

” Al AL )
3 l—_&(i) Q’B_E_ _AW]]
: A e )
Then condition (21) imposes the following limitation on Afgf
-10f3 -4
2P (AtB }'L'YB) & (l - C )(—% -C ) (23)
The temperature excursion in A, AR = 'T;\ - Tl.) , is related to A—B by the relation
T T
ATa - %_/B (24)
Ta 8
Finally the area enclosed by the cycle is expressed as follows:
¢ i Ty e
V = 3 TV -g B~ ¢
g? AV = S?(‘/) av + &PD(V)" ) oA A A:}:v‘ ‘ - (25)
V,s, ; Vg A 2

After multiplication 5} a factor 2 (in order to take into account the two particle species)

the formula above gives the energy recovered by the external circuit under ideal conditions.

4. Case of Small Cycles: the Electric Power

We consider now the case of small decompressions- compressions and of small temperature

excursions so that the following approximations can be introduced

VB'VA & | é_f_B_ « | (26)
Va 21

The power of the electricity generation is defined by the expression




=Ll3 =L iod
P r%{f’a‘dv r%v (27)

where v is the duration of the cycle, namely 7 = AfA e Dibgtnd e

Solving Eq. (18) after linearization, one obtains

AfA = Aty (fu‘ _I:'."..— ,/) (28)
| Vy ¢ Tea
so that
Y/
roog -t T +odrf (29)
B T-Tw
Expressmg T with Eq. (22) and putting £, = & 7; /T the power P takes
the form
V, - Vo
£ 22 - &
P = A Ts Va-1a Vs
Y, V- % T §0)
This expression has a maximum as a function of £y - Assuming 27 /A‘f <| , the
maximum exists when 3 V&—\[A (I ) ( Mecdo OCJMJ/
12 xg u\Jc
EA:'UVTM L% VA( t)ﬂ
A (31)
7/:n 2 YB‘—V; (— _:(_,_. \
T ?_A't ) (/\/eoJMucwc /\caﬁ\u )

The maximum power which can be extracted from the cycle is then expressed as follows

(L~2)
? = "‘/YLV B (V V)
M B~ A )(i- (32)

Finally we observe that under the optimization condition (31) the value of AfA is simply

given by the expression
Ot = Atgs % (33)

provided that (VB'VAVVB« l.




5. Examples

a) The "Zindexperiment"

As an example, we give the predictions of the formulas above when the parameters
of the Zundexperiment are introduced. We take C=1.5, \é = 1211 m3, m, =
=3.33 x 1020 m-3 and Tm = 10 kev. Let us assume that in the ignition regime, before
the application of the controlling cycle, the temperature reaches a value T; =15 kev.

Then one has the following values:

State A fA = Px 10 SM //m3

State B

w7

::/_{ré("f

Pg = ZMx/ﬂjm/fe/mj Tg = 973 kev

In the transition B—>C we take a temperature drop A'g = 1,73 kev. Solving Eq. (22) one
finds that this accurs in a time Aﬁg =0.57 7_/3 . The value of p in C can be directly
calculated from AG , since, combining Egs. (16) and (22), one obtains

AT )2/J
p. = /ie(/—.__l /B ) (34)
Tl
So, after the time At, , the system is in the following state:
5 -
State C pe = L66x 10 C},«A/Mf To= 7 ter
and after a time Afg + Te
S
State D Pp = £4x /0&nb&/w3 T, =120 ke

In order to reach the state A and close the cycle the temperature must increase of the
amount A ‘72 =T - T, =299 ler . This oceurs in a time a4t =?ﬁ“7;.
The total duration of the cycle is then

v =26 +27
Taking 7, 0.250 and 7% 0.06  onehas 7 =0.77 . At this point we
can immediately calculate the energy recovered by the external circuit under ideal
conditions and the power of the electric generation, using (25) and (27). One obtains

£ 3 £
Q;Pc’v = L07x 10 ),u,cle ?: _Z_éff—- = ['If-x/pa/@‘y‘/ﬂ
d / r




b) INTOR
In the case of small compression-decompression cycles for burn control one can use
(32) for the optimized power. Since we are in a situation very near to marginal

ignition, Pmox can be expressed directly in terms of the total & - power heating EE

=3xpl Vi )
! Vg - Va Liile 39
2 = 7’ ( 8 ) / =
'?'IML R < Afs) C
Assuming a compression factor 1.05 for the burn control one has that Pmax < 10_2 P{%‘.

It follows that P cannot exceed few 100 kW.
max
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